Department of Computer Science

American International University-Bangladesh
News     Events     Notices     AIUB     Login    
  Faculty of Science & Technology    

DR. MD ALAMGIR KABIR

  Assistant Professor , Computer Science
  LinkedIn
  alamgir@aiub.edu
  Website
  Building: 408/1, Kuratoli, Khilkhet, Dhaka 1229, Bangladesh
  Room No: DN0616

Educational Details

 PhD in Computer Science
City University of Hong Kong, Hong Kong
 MEng in Software Engineering
Wuhan University, China
 BSc in Software Engineering
Daffodil International University

Biography

Dr. Kabir received the Ph.D in Computer Science from the City University of Hong Kong under Dr. Jacky Keung. He was a faculty member in the Department of Software Engineering at Daffodil International University prior to joining AIUB. He is an active software engineering researcher, and his research lies at the intersection of empirical software engineering and AI. Recently, he has been trying to employ the knowledge of data stream mining, statistical modeling, and empirical investigation to produce more reliable defect prediction models. His research work has been published in prestigious journals, including Information and Software Technology, Applied Soft Computing, and other leading conferences. His Ph.D research publications have been supported by software companies and Hong Kong Government research funds. He has received a prestigious postgraduate studentship for his Ph.D studies at the City University of Hong Kong from 2018 to 2021. Research Interests/ Areas: Trustworthiness of Deep Learning Models Empirical Software Engineering Software Analytics Bioinformatics Dr. Kabir's mission is to help the community towards engineering high-quality and secure software systems for social good. If you share the same value, please reach out for collaborations. For updates, please check - https://makabir4.github.io/ Selected Publications: 1. Kabir, M. A., Keung, J., Turhan, B., & Bennin, K. E. (2021). Inter-release defect prediction with feature selection using temporal chunk-based learning: An empirical study. Applied Soft Computing, 113, 107870. (Q1; Impact Factor: 6.725) 2. Yang, Z., Keung, J., Kabir, M. A., Yu, X., Tang, Y., Zhang, M., & Feng, S. (2021). AComNN: Attention enhanced Compound Neural Network for financial time-series forecasting with cross-regional features. (Q1; Impact Factor: 6.725) 3. Kabir, M. A., Keung, J. W., Bennin, K. E., & Zhang, M. (2020, July). A drift propensity detection technique to improve the performance for cross-version software defect prediction. In 2020 IEEE 44th Annual Computers, Software, and Applications Conference (COMPSAC) (pp. 882-891). IEEE. (Core Rank: B) 4. Kabir, M. A., Keung, J. W., Bennin, K. E., & Zhang, M. (2019, July). Assessing the significant impact of concept drift in software defect prediction. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC) (Vol. 1, pp. 53-58). IEEE. (Core Rank: B)